\(R^{-1}\) の計算(24)

\begin{equation*} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \end{equation*}

(23)の所でずっと詰まっていた。イベントを通り抜ける。その最中、そういえば …

more ...

\(R^{-1}\) の計算(23)

\begin{equation*} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \end{equation*}

glassoが自己相関行列を指数移動平均で更新したら、NGSAとほぼ同等の性能を出 …

more ...

\(R^{-1}\) の計算(22)

\begin{equation*} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \end{equation*}

前日見ていた \(\ve{R}^{-1}\) のAR(1)仮定による近似を実験しているが、渋いな〜渋い …

more ...

\(R^{-1}\) の計算(21)

\begin{equation*} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \end{equation*}

昨日あたりから三重対角行列の性質を使ってうまくやれないか...でずっと …

more ...

\(R^{-1}\) の計算(20)

\begin{equation*} \newcommand\innerp[2]{\langle #1, #2 \rangle} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\parfrac[2]{\frac{\partial #1}{\partial #2}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \newcommand\KL[2]{\mathrm{KL} \left[ #1 \ \middle| \middle| \ #2 \right]} \end{equation*}

色々方針がグッ …

more ...

\(R^{-1}\) の計算(19)

\begin{equation*} \newcommand\innerp[2]{\langle #1, #2 \rangle} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\parfrac[2]{\frac{\partial #1}{\partial #2}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \newcommand\KL[2]{\mathrm{KL} \left[ #1 \ \middle| \middle| \ #2 \right]} \end{equation*}

\(\ve{R}\) はToeplitz(テプ …

more ...


\(R^{-1}\) の計算(18)

\begin{equation*} \newcommand\innerp[2]{\langle #1, #2 \rangle} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\parfrac[2]{\frac{\partial #1}{\partial #2}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \newcommand\KL[2]{\mathrm{KL} \left[ #1 \ \middle| \middle| \ #2 \right]} \end{equation*}

進捗報告。TODO:

  • sklearn …
more ...

\(R^{-1}\) の計算(17)

\begin{equation*} \newcommand\innerp[2]{\langle #1, #2 \rangle} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\parfrac[2]{\frac{\partial #1}{\partial #2}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \newcommand\KL[2]{\mathrm{KL} \left[ #1 \ \middle| \middle| \ #2 \right]} \end{equation*}

間に合うかわ …

more ...

\(R^{-1}\) の計算(16)

\begin{equation*} \newcommand\innerp[2]{\langle #1, #2 \rangle} \newcommand\ve[1]{\boldsymbol{#1}} \newcommand\parfrac[2]{\frac{\partial #1}{\partial #2}} \newcommand\mean[2]{\mathrm{E}_{#1} \left[ #2 \right]} \newcommand\KL[2]{\mathrm{KL} \left[ #1 \ \middle| \middle| \ #2 \right]} \end{equation*}

課題祭りで11 …

more ...